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ABSTRACT

Sustainable western US municipal water system (MWS) management depends on quantifying the impacts of supply and demand dynamics on

system infrastructure reliability and vulnerability. Systems modeling can replicate the interactions but extensive parameterization, high com-

plexity, and long development cycles present barriers to widespread adoption. To address these challenges, we develop the Machine

Learning Water Systems Model (ML-WSM) – a novel application of data-driven modeling for MWS management. We apply the ML-WSM frame-

work to the Salt Lake City, Utah water system, where we benchmark prediction performance on the seasonal response of reservoir levels,

groundwater withdrawal, and imported water requests to climate anomalies at a daily resolution against an existing systems model. The ML-

WSM accurately predicts the seasonal dynamics of all components; especially during supply-limiting conditions (KGE. 0.88, PBias,+3%).

Extreme wet conditions challenged model skill but the ML-WSM communicated the appropriate seasonal trends and relationships to com-

ponent thresholds (e.g., reservoir dead pool). The model correctly classified nearly all instances of vulnerability (83%) and peak severity

(100%), encouraging its use as a guidance tool that complements systems models for evaluating the influences of climate on MWS

performance.

Key words: data-driven modeling, machine learning, municipal water system, water system climate vulnerability, XGBoost

HIGHLIGHTS

• Machine learning models capture water system response to climate-driven supply and municipal demand.

• Machine learning can bypass the high parameterization and development challenges associated with systems models.

• Predictions of water system component status from the XGBoost algorithm can produce representative estimates of reliability, vulner-

ability, and severity to support management decision-making.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

Western US municipal water system (MWS) management makes critical operational decisions based on the estimated volume
of winter water storage (i.e., snowpack), projected surface water yields, and the anticipated timing and magnitude of water
demands. The accumulation of winter precipitation (e.g., snow-water-equivalent (SWE)) functions as a high-elevation storage

reservoir, driving groundwater recharge through hydrological mechanisms and providing the greatest surface water yield
during spring snowmelt (April through early July). Municipal water demand exhibits an opposing seasonal pattern with mini-
mal demand during spring and a high peak during the mid-to late-summer as outdoor water use for irrigation increases to

mitigate greater evapotranspiration (Monteith 1965; Shuttleworth et al. 2009; Lhomme et al. 2015). The seasonal variability
in surface water supply, year-to-year fluctuations in annual yield, persistent summer drought, and dynamic climate-demand
interactions require active monitoring and reliable projections of key MWS components (e.g., reservoir levels) to inform man-

agement decisions, particularly, in a changing climate (Purkey et al. 2007; Harpold et al. 2012; MacDonald et al. 2012;
Barnett et al. 2019; Johnson et al. 2021; Jennings et al. 2022; Wlostowski et al. 2022).

Building climate resilience in MWS planning and management requires a standardized platform that is capable of charac-

terizing system performance, highlighting potential vulnerabilities, and establishing a framework to gauge the degree of
potential improvements from different strategies. Hashimoto et al. (1982) applied the concepts of reliability, resilience,
and vulnerability (RRV), based on predetermined thresholds, to serve as a standardized protocol for evaluating reservoir per-
formance to various conditions and assisting in the evaluation and selection of alternative design. The framework defines

reliability as the probability of the non-exceedance of the threshold, resilience as the speed of recovery from an exceedance
event (e.g., the number of days to return to a specified reservoir level once exceeded), and vulnerability as the severity of an
exceedance event (i.e., the magnitude of a failure). The introduction and evolution of the RRV framework establish a platform

to evaluate many aspects of the MWS to a range of alternative futures, including seasonal to decadal projections of surface
water supplies, estimates of demand, and the operations and development of infrastructure (Makropoulos et al. 2018;
Nikolopoulos et al. 2019). By modeling the MWS with a system modeling approach and evaluating the outcomes with an
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RRV assessment, researchers, planners, and managers can characterize the projected system performance and explore sol-

utions to mitigate vulnerabilities (Wang & Blackmore 2009; Füssel 2010; Goharian et al. 2017; Goharian & Burian 2018).
Models reflecting water system operations play a significant role in the planning, management, and design of water

resource systems (Reuss 2003). Among water systems models, the systems modeling framework establishes a foundation to

create a digital representation of the MWS, aiding in the understanding of the feedbacks and interactions between com-
ponents as well as external influences. The application of a systems model framework to an MWS needs to include all key
components that influence the overall performance, including but not limited to infrastructure connectivity, institutional
and policy actions, and component capacity limitations to fit the conceptual model (Gastelum et al. 2008). Systems

models use the continuity equation to define the intrasystem interactions, accounting for system-wide mass balance changes
that describe the observed cause–effect relationships (Winz et al. 2008; Gastelum et al. 2009; Madani & Mariño 2009). While
complex in model size and development, a systems model simplifies the hydrological system to the primary physical drivers,

which must be explicitly defined to reflect real-world operations (Antunes et al. 2018; Jaiswal et al. 2020).
Given the systems modeling framework is versatile and applicable to a suite of water resource applications, MWSmodeling

brings a unique set of challenges. Fu et al. (2022) identifies multiple obstacles in the development of systems models for urban

water system applications: (1) the complexity of MWS and interactions with ecosystems and climate systems (behaviors and
cascading impacts) is particularly difficult to accurately capture, (2) there remains great difficulty in determining modeling
assumptions, various processes and model structures, and calibrating a large number of model parameters, (3) the human

resources and skills required challenges model development, and (4) the models are system-specific preventing the transfer-
ability from one MWS to another. Parameters include but are not limited to, the capacities of water treatment facilities,
maximum flow rates of water transfer infrastructure, storage and operations of reservoirs, and overall connectivity of the
system (Goharian et al. 2017). Calibration refers to the manual adjustment of parameters to reflect a test condition from obser-

vations. The calibration process may adjust aqueduct lengths, diameters, slope, or Manning values to reflect observations
surrounding lag time, velocity, and/or volume. In a complex system, although simplified, there are often several sources, a
variety of users (e.g., domestic, commercial, industrial), multiple reservoirs, different pressure zones, source prioritization

schemes, and connectivity. Accurately integrating all of the key features to describe the real-world system interactions,
high model complexity, an extensive period of development, and intrinsic limitations present obstacles to model development
and have led to a stall in research capabilities (Marçais & de Dreuzy 2017; Jaiswal et al. 2020).

The effective use of extensive and semantically connected data describing systems demonstrates the potential to transform
the modeling paradigm (Jadidoleslam et al. 2019; Fu et al. 2022). The exploration of data-driven models stems from the ability
to simulate feedbacks and interactions between MWS components without an a priori understanding of the dominant driving
mechanisms or interconnections (Kalin et al. 2010; Sarkar & Pandey 2015). McCuen (2016) found that data-driven machine

learning (ML) can model hydrological change without explicit knowledge of the system, accelerating the development of
models targeting water quality compared to systems models. Rather than parameterizing and calibrating each unique process
or component (e.g., inputting flow capacities, reservoir volumes, travel time), ML elicits useful criteria and trends derived

directly from data during training to determine and optimize internal parameters (Mahmoudi et al. 2016; Noori et al.
2020). Bypassing the need to define every component and interaction within the MWS makes ML approaches appropriate
where the objective is to model behavior or outcomes of a system rather than to explicitly characterize the intercon-

nected physical processes (Shen 2018). The demonstrated success in model skill results in the transdisciplinary
application of ML to serve as a highly performant decision-making tool and an alternative to systems models
(Ma et al. 2019; Haskins et al. 2020).

Applications using data-driven approaches to model hydrological systems indicate accurate predictions that benefit
decision-making despite reduced computational and developmental complexities compared to systems models. Aghelpour
& Varshavian (2020) used multilayered perceptron (MLP) networks to model daily Zilakirud River flows in northern Iran
with high levels of accuracy during wet and dry years. The model operates as a flood warning system to trigger evacuation

measures and mitigation actions, reducing the cost of life and damages. Mohammadi et al. (2020) applied support vector
regression, random forest (RF), principal component analysis (PCA), and a grey wolf optimization algorithm to forecast
monthly Lake Titicaca fluctuations in water level with low error. The framework supports the optimization of water storage

for drinking, the production of hydroelectric power, and the balancing of beneficial water use practices concerning environ-
mental, agricultural, and industrial users. Using an artificial neural network (ANN) and fuzzy analytic hierarchy process,
Imani et al. (2021) predicted the resilience of water quality in São Pablo, Brazil to identify basins with urgent needs for
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remediation. Rozos (2019) developed a reservoir optimization model built using a feedforward neural network, providing an

array of options to mitigate contemporaneous system-compromising externalities to enhance the management of urban water
resources. While previous research explores the expansion of ML approaches throughout many aspects of water resources,
the application of ML to inform MWS decision-making to climate anomalies has not been studied to date.

The interactions between infrastructure, operations, and climate strongly influence the performance and vulnerabilities of
an MWS. While systems modeling can capture MWS interactions and feedbacks, high parameterization, an immense period
of development, and the simplification of complex hydrological processes hinder its widespread adoption. ML approaches
demonstrate the capacity to address the limitations of systems models for MWS applications but have not been applied or

investigated as a tool to support decision-making. We develop the Machine Learning Water Systems Model (ML-WSM) as
a novel application of ML to address the research gap, investigating the achievable level of performance by ML approaches
for modeling the responses of key MWS components to variations in supplies and demands driven by climate anomalies.

Recognizing the heterogeneity of MWS, we design the ML-WSM as a modular and model-agnostic workflow to extend its
application to any MWS with ample data, predict key components of the MWS, and coupled with a vulnerability assessment
to support decision-making. We apply the ML-WSM framework to the Salt Lake City Department of Public Utilities

(SLCDPU) water system in Utah, where the ML-WSM predicts the response of reservoir levels, groundwater withdrawal,
and imported water use at a daily temporal resolution to extreme dry through wet climate conditions, benchmarking
model performance to an existing systems model.

2. METHODS

We develop the ML-WSM as a generalizable ML framework to reduce the barriers to entry for evaluating the MWS response
to externalities compared to a systems model. The framework consists of outlining the conceptual workflow (Section 2.1);

model inputs, incorporation of system connectivity, and methods for feature optimization (Section 2.2); algorithm selection
(Section 2.3), and evaluating the model (Section 2.4). Section 2.5 describes the coupled vulnerability assessment to gauge the
projected reliability and vulnerability of the key MWS components.

2.1. Conceptual workflow of the ML-WSM

The motivation of the ML-WSM is to streamline the development of an MWS model using a broadly adaptable system-agnos-

tic workflow, assuming that system-specific features, supplies, demands, and infrastructure, while unique to each system,
remain generic drivers of performance. The conceptual workflow of the ML-WSM initiates by (1) the user determining con-
ceptual components of the MWS to model (e.g., reservoir levels, imported water requests, groundwater withdrawal), (2)
identifying components (features) that influence the components and the overall system (e.g., other components, supply avail-

ability, demands), (3) investigating ML algorithms, and (4) evaluating model performance (Figure 1). The workflow
encourages the iterative evaluation of different formulations to optimize ML-WSM performance.

Defining the goals of the ML-WSM will guide the development process and assist in identifying key MWS components to

model. The goals can consider several forecast horizons and temporal resolutions that uniquely aid in planning and manage-
ment guidance, such as sub-daily to support daily operations (e.g., peak daily MWS performance), daily to guide monthly to
seasonal supply and demand management (e.g., drought contingency planning), or annual to inform long-term infrastructure

development, and/or prepare for growth. The extent of the forecast horizon depends on the availability of model inputs (e.g.,
estimates of streamflow or climate) to develop an effective model. If the goal is to model sub-daily water system performance
but only daily data is available, a data-driven model may not be appropriate because the available data does not match the

modeling goals. If daily resolution data is available and the goal is to assess water system performance to seasonal climate
variations, the ML-WSM could meet the expected modeling goals. We further recommend connecting the effective forecast
horizon to prescribed levels of decision reliability quantified by the error bound, i.e., the largest difference between the opti-
mal decisions made under any two climate scenarios (Zhao et al. 2019).

Aligning with the modeling goals, the user needs to identify specific MWS components of interest. Examples include reser-
voirs for storage, sustainable groundwater yields, imported water allotments, and multiple sectors of water use that define
MWS performance and are of operational importance to management. If a component is important to decision-making,

then it is an essential component of the conceptual framework.
Developing a representative ML-WSM depends on identifying the optimal features of each modeled MWS component to

leverage the power of ML to bypass the manual calibration procedures of systems models. Selecting features containing the
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embedded intrasystem relationships for each MWS component minimizes prediction errors, reduces model complexity, and
removes features that can be detrimental to performance (e.g., collinearity) and increase prediction uncertainty (Dormann
et al. 2013; Sit et al. 2020). For example, a systems model requires the inflow to reservoir A, reservoir A levels, reservoir

A level-capacity rating curve, reservoir A release rates, reservoir B levels, reservoir B level-capacity rating curve, and reservoir
B release rates to model the reservoir interactions. A data-driven model may only require reservoir B levels or reservoir A
inflow as these components may have all other system components embedded within the data. Section 2.2 provides a

deeper perspective into feature considerations, including the availability of data and the temporal resolution to support
the intended use of the model.

Modeling the MWS with ML can provide flexibility in model architecture that can adapt to the system of interest

and/or preference of the developer. The ML-WSM can be as simple as a single ML model to predict many
outputs (e.g., reservoir levels and groundwater withdrawal) or as complex as several interconnected submodules to pre-
dict individual components of a system (e.g., one for reservoir A, one for reservoir B, and one for groundwater

withdrawal). A multimodel approach supports one-to-one and one-to-many relationships between MWS components,
provides a platform to evaluate a variety of input features, and explores different algorithm types (Section 2.3) to
optimize each submodule. Model configuration and development can leverage existing ML pipelines for algorithm
optimization (e.g., grid search parameter optimization) and training (e.g., training/testing splits, hold-one-out)

(Garreta et al. 2017).
Model evaluation forms the final step of the conceptual workflow, where Section 2.4 describes a sample of evaluation

metrics that the developer can tailor to the respective problem. The ML-WSM workflow encourages iterative model develop-

ment, where the developer engineers and tests new features, assesses system performance to different levels of feature
collinearity, investigates different methods of feature selection, and explores a variety of ML algorithms to improve and
adapt the ML-WSM framework to decision-making goals.

Figure 1 | The conceptual workflow (1) determines the key municipal water system (MWS) components, (2) identifies features that influence
the key components, (3) selects ML algorithm(s) for evaluation, and (4) evaluates model performance to iteratively improve the model.
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2.2. Feature engineering and selection

The modeled MWS components and the overall objectives will guide the feature development processes. Data availability is a
strong determinate and guiding factor because there must be ample data at the appropriate temporal resolution to support

model training, and by proxy, predictions (Ficchì et al. 2016; Sunkara & Singh 2022). Temporally relevant features are critical
for developing ML models as the models exhibit a direct link between feature optimization and prediction skill (Chandrashe-
kar & Sahin 2014; Li et al. 2017), and exhibit a preference for modeling at higher temporal resolutions because of the overall
increase in training data quantity (Eggimann et al. 2017). Developing a model at a higher temporal resolution supports the

upscaling of prediction (e.g., daily to monthly) as opposed to downscaling (e.g., monthly to daily). The optimal resolution will
be a balance between the availability of data, dimensionality, and computational efficiency. The feature development process
consists of two generalizable steps: (1) feature engineering and (2) feature selection that prepare, transform, construct, and

filter features to optimize model performance (Sun et al. 2020; Wang et al. 2022).
Feature engineering should develop features describing water system component feedbacks and interactions. With the per-

formance and resilience of arid MWS subject to reservoir level(s) (Goharian et al. 2017), groundwater withdrawal

(Moghaddasi et al. 2022), and the volume of imported water requests (Mukheibir 2008) as well as influencing factors such
as the availability of surface water (streamflow if used for an MWS), municipal water demand (water use across all sectors),
hydroclimate conditions (temperature, precipitation, evapotranspiration), socioeconomic factors (population, number of
households), and/or the time of year (day of year or month), it is essential to develop dynamic features at the respective

time step representing these influences on the water system (Sun & Scanlon 2019). Feature engineering may require appli-
cation-specific data processing methods, such as gap filling in time series data or scaling observations to match the desired
temporal resolution (Rebora et al. 2016; Dembélé et al. 2017; Arriagada et al. 2021). Features describing the connectivity

of the MWS can improve model performance and we recommend exploring MWS components from the previous timestep
as features for the prediction of MWS components, as they can support the memory of initial conditions and interactions into
the model (Längkvist et al. 2014; Hu et al. 2018; Moishin et al. 2021). For example, reservoir A levels from the preceding

timestep (e.g., July 1) could be a feature of reservoir B levels (e.g., July 2). While ML-WSM development encourages the
exploration of many water system components as influencing features, the feature space can become increasingly large
and subject to the curse of high model dimensionality (Castelletti et al. 2010).

The goal of feature selection is to optimize the features of each model, as it has a direct connection to the performance of
the model, reduces model dimensionality, improves learning accuracy, and facilitates conceptual model understanding (Cai
et al. 2018; Sit et al. 2020). A general recommendation is to address any collinearity among features and then apply a feature
optimization algorithm (Yan & Zhang 2015). Collinearity describes a condition where two or more features exhibit a linear

relationship with another (or multicollinearity) and can become more significant with an increasingly larger feature space
(Alin 2010). The removal of collinearity increases the variance within the features to increase the strength of the predic-
tion-target relationships (Guyon & Elisseeff 2003; Cai et al. 2018). We recommend a variable inflation factor (VIF) test to

address collinearity among features where the VIF determines the strength of the correlation by regressing a feature against
all other features (Akinwande et al. 2015)

VIF ¼ 1
(1� R2)

(1)

where R is the Pearson correlation coefficient of two variables defined by

R ¼

P
i
( fi � �f)(yi � �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
( fi � �f)

2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
(yi � �y)2

r (2)

where fi and yi are features within the feature space. From Equation (1), R2 values closer to 1 between two features will result
in a higher VIF value. VIF values exceeding 10 indicate high levels of collinearity among features and we recommend remov-
ing the features displaying the lower correlation to the target (Menard 2002; Chatterjee & Simonoff 2013). A VIF of 10 should
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not be viewed as a critical threshold (O’brien 2007) but as a development recommendation as there is value in features

describing MWS connectivity.
Feature selection methods aim to reduce model dimensionality to ultimately improve model performance, whether through

a reduction in the total number of features or combining the information embedded between many features into fewer model

inputs (Keogh & Mueen 2017; Jia et al. 2022). Common methods include PCA, LASSO regularization, recursive feature elim-
ination (RFE), and auto-encoders. PCA functions as a statistical analysis method that transforms several features into a few
integrated features reflecting the information contained in the original set of features (Moore 1981). LASSO regularization
penalizes features of a model to a coefficient value of zero that are of minimal modeling significance, with the non-zero coef-

ficient features being key model predictors (Muthukrishnan & Rohini 2016). The RFE algorithm prioritizes dimensionality
reduction through the identification of strong predictors from the complete feature space to improve both model skill and
minimize model complexity, removing noisy and non-informational features (Chen & Jeong 2007; Tolosi̧ & Lengauer

2011). An autoencoder is a type of neural network that learns a compressed representation of the original feature space, com-
monly referred to as a bottleneck, where the autoencoder ingests the original feature space and the output of the model at the
bottleneck functions as the input into the modeling algorithm (Wang et al. 2017; Han et al. 2018). We summarize the benefits

and limitations of each method in the Supplementary Material. There are many dimensionality reduction methods available
and we encourage examining their impact on model skill during development.

2.3. ML algorithm selection

ML algorithms determine patterns and relationships embedded within the data between inputs and outputs during the train-
ing process rather than the explicit instructions of static programming algorithms. Leveraging the power of ML requires the
correct use of and selection of the algorithm (s) for the respective tasks (Raschka 2018; Lee & Shin 2020). ML algorithms can

be fit into two main categories: unsupervised and supervised learning. The basis of unsupervised algorithms is that a machine
can learn patterns without human guidance, useful for clustering and dimensionality reduction (Hofmann 2001) but does not
support regression tasks. Supervised ML algorithms are flexible, comprehensive, and support both classification and

regression modeling tasks by identifying general patterns that support predictions from a given set of inputs (Choudhary
& Gianey 2017). Supervised learning connects the inputs to a labeled set of outputs, or targets, through extensive data pro-
cessing (e.g., cleaning, randomizing, and structuring the input and target data) and model training procedures that align with

the goals.
Algorithm selection can be challenging as there are many choices and the transferability of the optimal algorithm for one

water system may not be ideal for another. Common ML algorithms for water resources modeling include ANNs (Kouziokas
et al. 2018; Raj & David 2020; Xu et al. 2020), recurrent neural networks (RNN) (Kratzert et al. 2018; Gangrade et al. 2022;
Krishnan et al. 2022), and decision tree algorithms (Li et al. 2022; Wu et al. 2022; Yusri et al. 2022). ANNs consist of a feed-
forward network utilizing three types of layers: an input layer, middle hidden layers that perform the computational tasks, and
an output layer with the prediction. Commonly used ANNs for water resources include MLP and Extreme Learning

Machines. RNNs are a type of ANN that excel at time series modeling applications, demonstrating a memory-like capability
by using prior inputs of a sequence to influence the predictions. The Long Short-Term Memory algorithm is a popular RNN.
Decision tree learning imitates the human decision-making process with the model prediction pathway emulating the appear-

ance of a tree (e.g., if-else statements), supporting greater interpretability of model architecture compared to other ML
algorithms. Xtreme Gradient Boost (XGBoost), RF, and Light Gradient Boosted Machine are common decision tree algor-
ithms within water resources. We summarize the benefits and limitations of these ML algorithms in Supplementary

Material, Table S1. We recommend a review of the contemporary applications of supervised ML algorithms throughout
water resources management (Choudhary & Gianey 2017; Tyralis et al. 2019; Ghobadi & Kang 2023) and exploring multiple
ML algorithms during the development process.

2.4. Model evaluation

Evaluation provides the foundation for benchmarking the performance of a model, with a recommendation to use 10–30% of
the training data to evaluate model performance (training the ML model on 70–90% of available data) (Dao et al. 2020; Pham
et al. 2020). We use standard metrics within water resources for determining model performance, including the root-mean-
square error (RMSE), Kling-Gupta Efficiency (KGE), and Percent Bias (PBias) (Equations (3)–(5)). RMSE is the default
measure of the physical differences between predicted and observed as a function of the square root of the second sample
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moment or quadratic mean.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 (yi � fi)

2

n

s
(3)

where yt are the observed values, fi are the daily forecasted values, and n are the number of predictions (i.e., timesteps) in the

observed time series. The KGE is an expression of the distance between the point of ideal model performance in the space
described by its three components, (1) correlation, (2) variability, and (3) bias (Gupta et al. 2009). Values approaching 1 indi-
cate a perfect model fit between predictions and observations, and a benchmark for performance is �0.41, as values greater

than this exhibit performance greater than the mean (Knoben et al. 2019).

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r� 1)2 þ (b0 � 1)2 þ (a� 1)2

q
(4)

The PBias computes the average amount that the observed is different than predicted as a percentage of the observed, com-
municating if, on average, the model favors predictions above (– bias) or below (þ bias) the observed. Ideal PBias values are
close to zero, with positive (underpredicting) or negative (overpredicting) values indicating the model prediction tendency.

PBias ¼ 1
n

Xn
i¼1

(yi � fi)
jyij (5)

Each evaluation metric characterizes model performance differently. The RMSE conveys error in component units; KGE

expresses in a single metric the similarity between observed and simulated from correlation (r), Bias ratio (b), and the varia-
bility ratio (g); and PBias measures the average tendency (+%) of the predicted values relative to the observed.

2.5. Vulnerability metrics

We couple MWS performance evaluation tools to model outputs for assessing vulnerabilities and gauging performance rela-
tive to historical component observations. While the vulnerability assessment can be on any component, the results are most
meaningful when these components are strong indicators of overall MWS performance (Goharian et al. 2017; Nikolopoulos

et al. 2019). The simulated time series of the key components form the initial input.

Xt; t ¼ 1, 2, . . . , T (6)

where Xt is the status of each component at time t, and T is the time period of the analysis. Using the time series of predic-
tions, we calculate the system performance index (SPI)

SPI ¼ f(Xt); t ¼ 1, 2, . . . , T (7)

where the SPI value is either one or zero depending on whether the prediction exceeds a threshold at each timestep (f(Zt)). A
threshold establishes a measure of comparison that defines and differentiates satisfactory (S) and unsatisfactory (U) states of
the component for each timestep (e.g., the half-full capacity of a reservoir). Using the threshold, the calculation of SPI is

SPI ¼ f(Zt) t ¼ 1, 2, . . . , T and
Zt ¼ 1 Xt [ S
Zt ¼ 0 Xt [ U

8<
: (8)

From the SPI, we can calculate the RRV of the MWS.
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2.5.1. Reliability

Reliability describes the frequency of a component operating in a satisfactory state

a ¼
PT

t¼1 Zt

T
¼ 1� nf

T

� �
(9)

where a is the estimate of reliability, and nf is the number of unsatisfactory timesteps in the simulation (T). Reliability is at the
temporal resolution of the simulation, with values close to 1 indicating optimal levels and values close to 0 indicating com-
promised levels.

2.5.2. Vulnerability

Reliability cannot fully describe the behavior of the MWS, as the degree of unsatisfactory conditions is a critical decision-
making component (Sandoval-Solis et al. 2011; Asefa et al. 2014). Vulnerability communicates the magnitude of unsatisfac-
tory conditions for a component as a function of exposure and severity.

Vulnerability ¼ f(exposure, severity) (10)

Exposure is the state of the unsatisfactory condition of each component due to externalities (e).

WSCIe ¼ 1� WSCe

WSCH
(11)

allowing for the calculation of the MWS component (WSC) index to externalities (WSCIe) by comparing the magnitude of the
severity of the component during the simulation (WSCe) to the historical record observations (WSCH). The WSCIe varies
from 0 to 1, with values closer to 1 representing increased vulnerability and 0 conveying the opposite with respect to historical

conditions. The historical period of observation or simulation determines each WSCH while each scenario of various extern-
alities has a unique WSCe.

Severity describes the average magnitude of unsatisfactory conditions of each component under scenarios of external influ-

ences. The calculation of this metric is

S ¼
X

st � et Xt [ U (12)

where st quantifies the severity of unsatisfactory conditions at time t, and et is the occurrence probability of Xt (in the form of
st) as the most severe result from a set of unsatisfactory states. The average vulnerability of the system is a function of exposure
and severity

Vulnerability ¼ WSCIc � bWSC þ S � bS (13)

where bWSC and bS weights communicate differences in the importance of exposure and severity on the overall vulnerability

of a component.

2.5.3. Peak severity

Peak severity characterizes the maximum magnitude of unsatisfactory conditions of each component during a simulation.

The calculation of this metric is

S ¼ max(st) Xt [ U (14)

where st is the severity of unsatisfactory conditions at time t when Xt (in the form of st) is unsatisfactory. The metric commu-
nicates the most severe result of unsatisfactory states for a simulation, an indicator illustrating the severity of the system
compared to historical observations.
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2.5.4. Improving the interpretability of the vulnerability assessment

The RRV values of 0–1 provide minimal operational guidance and to provide a useful tool for system management, we apply
the Jenks classification algorithm to categorize the level of vulnerability and severity. Jenks classification minimizes the aver-

age deviation within each category while maximizing the deviation from the means of other categories (Jenks 1967). We
suggest three categories ranging from Category 1 (Low) to Category 3 (High), connecting the simulated performance of
each component to historical levels of vulnerability and severity. The categorized vulnerability results relate model predic-
tions to the historical record.

3. APPLICATION OF THE ML-WSM TO A REAL-WORLD MWS

We investigate the utility of the ML-WSM by applying it to the SLCDPU water system and evaluate the performance of the
model in three climate conditions. The MWS has an extensive data record to train the ML model and a refined systems model
to serve as a performance benchmark (Section 3.1). We follow the conceptual ML-WSM framework to determine the key
MWS components and corresponding model input features that are sensitive to changes in surface water supply availability

and municipal demands (Section 3.2). Model development describes the selection and evaluation of different ML algorithms
and assesses the influence of different features on model performance, exemplifying the iterative development process (Sec-
tion 3.3). The evaluation scenarios (Section 3.4) describing the three climate scenarios complete the section.

3.1. Study area and systems model

The location of the SLCDPU in Utah shares many similarities with other western US water utilities in growing metropolitan
areas. The municipality serves approximately 350,000 people across residential, institutional, and commercial sectors in four
cities: Salt Lake City, Mill Creek, Holladay, and Cottonwood Heights. The interannual climate variability and seasonality of

the region strongly influence winter snowpack extent and duration, the primary mechanism controlling surface water supplies
(Scalzitti et al. 2016). The region experiences a cold semi-arid (BSk) climate that determines seasonal water use (Peel et al.
2007), outdoor water use can approach 1,000 mm for commercial and residential landscape irrigation from April to October

but is negligible from November to March (Collins & Associates 2019). High seasonal water use places Utah as the second or
third highest per-capita water use state depending on the year (Dieter 2018). The SLCDPU reports its monthly treated water
releases into the distribution system, including leakage and unaccounted system losses, to the Utah Division of Water Rights

(UDWR 2023).
The adjacent Wasatch mountain surface water, underlying valley groundwater, and imported water supplies from Deer

Creek Reservoir satisfy municipal demands. From the Wasatch mountains, City Creek, Parleys Creek, Big Cottonwood
Creek, and Little Cottonwood Creek contribute over 60% of the annual supply, with groundwater and imported water satisfy-

ing the remaining ∼40% of water demands when surface supplies cannot (Collins & Associates 2019). The Parleys Creek
watershed contains Mountain Dell Reservoir and Little Dell Reservoir with a storage capacity of 3:2� 106m3 and
25� 106m3, respectively, and are the only long-term storage sources owned by the utility. When surface water supplies

cannot meet demand, the SLCDPU has access to up to 22� 106m3 per year of sustainable groundwater. If surface and
groundwater supplies cannot satisfy demands, imported water from Deer Creek Reservoir supports up to 61� 106m3 per
year of supply. Figure 2 illustrates the location of the utility, the proximity of the surface water supplies, and the Dell reservoir

system to the service area.
Changing climate conditions and the need for system resilience prompted the SLCDPU to develop a water system model.

The Salt Lake City Water Systems Model (SLC-WSM) uses GoldSim modeling software (Goldsim 2013) to examine the

impact of changes in surface water availability on system performance and investigate actions to build system resilience
(Goharian et al. 2017). GoldSim supports submodels and linear programming to replicate the interconnections between
different MWS components, demonstrated through investigations of water system response determined by reliability and
cost (Lillywhite 2008), water system management decision-making to optimize reservoir operations (Alemu et al. 2011),
MWS vulnerabilities to climate and population changes (Goharian et al. 2017), and the impact of modeled water demand
accuracy on water system vulnerabilities during drought conditions (Johnson et al. 2021).

The SLC-WSM models the interactions between water system components using the conservation of mass and three gov-

erning modules to track water through the MWS at a daily time step: a reservoir operations module, a water supply module,
and a water allocation module (Goharian et al. 2016, 2017). The reservoir operations module defines the rules regulating the
Dell reservoir system, e.g., Little Dell Reservoir releases into Mountain Dell Reservoir and fromMountain Dell Reservoir into
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Parleys Creek and the water treatment plant (WTP). The water supply module uses the conservation of mass to track the
movement of water at a given timestep through the water system, including surface water supplies, WTPs, water users and
uses (indoor or outdoor), water transfer infrastructure, and wastewater treatment plants (WWTPs). Each component has mul-
tiple calibrated parameters to reflect the observed MWS connectivity and operations, such as WTP andWWTP capacities and

efficiencies, water transfer infrastructure capacities and efficiencies (e.g., aqueduct capacities), access and limitations to
imported water, groundwater pumping rates and sustainable withdrawal limitations, and rules defining sub-service area
water users (e.g., annual demand patterns, number of wells per sub-area). Figure 3 illustrates the connectivity of the water

infrastructure and the respective capacities.
The water allocation module models the gravity-centric design and the operational structure of the water system (Goharian

et al. 2017; Strong et al. 2020). The gravity-centric architecture governs the allocation of water throughout the service area.

For example, Cottonwood Heights, UT in the southwest corner of the service area in Figure 3 has the highest elevation and
access to surface water supplies from Little and Big Cottonwood Creeks, a select number of wells, and imported water. In
contrast, Salt Lake City, UT in the northern portion of the service area has access to all sources due to its geographical
location having the lowest elevation. The water allocation module defines source prioritization, i.e., surface water sources

before groundwater withdrawal and imported water from Deer Creek Reservoir. The module initiates groundwater withdra-
wal when surface water supplies cannot satisfy demands. Imported water requests occur when surface and groundwater
supplies (i.e., limited by the number of wells, extraction rates, and annual withdrawal limitations) cannot satisfy demands.

The source prioritization scheme optimizes supply sources based on water quality, storage, and cost (Strong et al. 2020).
Imported water from Deer Creek Reservoir is the least prioritized because it is a shared resource among other users (e.g.,
municipalities and irrigation districts) and is susceptible to harmful algae blooms (Malmfeldt 2021), requiring additional treat-

ment to achieve acceptable water quality.
The three modules model the movement of water into, through, and out of the SLCDPU water system. Goharian et al.

(2016, 2017) provide additional details on the iterative development, calibration, and validation of the SLC-WSM. While

the SLC-WSM can replicate the feedbacks and interactions between water system components, there are nearly 4,300
elements that required manual calibration over a 10-year period.

Figure 2 | The Salt Lake City Department of Public Utilities (SLCDPU) water system depends on the winter snowpack in the adjacent Wasatch
mountains for surface water supplies, filling the Dell reservoir storage system, and replenishing valley aquifers.
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Figure 3 | The Salt Lake City Water Systems Model (SLC-WSM) models the interconnections, operations, and capacity limitations observed in
the SLCDPU water system, including the gravity-centric distribution system and source prioritization structure tracking as water from the
sources to demands to discharge.
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3.2. Key components of the MWS and model inputs

Conceptualization of the ML-WSM begins by identifying key water system components and potentially influential features
(Figure 1). The utility is primarily concerned with system vulnerabilities driven by the differential timing of surface water

availability and peak municipal demands from April to October. The SLCDPU identified Mountain and Little Dell Reservoir
levels, groundwater withdrawal, and imported water from Deer Creek Reservoir as indicators of system performance as part
of the Salt Lake City Climate Vulnerability project (Strong et al. 2021). The Dell reservoir system is the only long-term water
storage within the system, thus monitoring and forecasting levels support management decision-making. Daily pumping rates

and sustainable annual yield limit the amount of groundwater the utility can use and water system management will benefit
from the projected timing of the sustainable withdrawal threshold. The volume and timing of imported water from Deer
Creek reservoir is the most critical indicator of system vulnerability, with estimates supporting proactive vs. reactive

management.
Feature identification is the next step in the ML-WSM workflow. We include surface water supply features of City Creek,

Parleys Creek, Big Cottonwood Creek, and Little Cottonwood Creek to represent water supply availability and total munici-

pal demand as the primary system influencing features. To represent system connectivity and a temporal connection, we
include the previous state (�1) of reservoir levels (% of full capacity), groundwater withdrawal, and imported water requests.
If Mountain Dell Reservoir is 90% full today, the proceeding day’s prediction should be within a few percentage points of 90%
capacity. We include daily surface water supply (combined), day of the year, month, and population to complete the feature

development phase.
Feature data comes from multiple sources. The utility provided a near-continuous long-term record of daily streamflow

observations (1910–present) from the canyon mouths prior to extensive diversion. We create the total surface water

supply feature by combining the flow rates of each supply creek from the streamflow observations. The Utah Department
of Water Rights provides the total volume of water entering the distribution system, including all connected demands,
leaks, and unaccounted-for losses (UDWR 2023). The Kem C. Gardner Policy Institute provides population estimates for

each city within the service area. We use the simulated reservoir levels, groundwater withdrawal, and imported water requests
from the SLC-WSM. While observed data would support a comparison between the SLC-WSM and ML-WSM, the motiv-
ation is to train the ML-WSM to replicate the SLC-WSM programming and use the SLC-WSM simulations to benchmark

the prediction performance of the ML-WSM.

3.3. Model development

We develop the ML-WSM using Python v3.10.1 to take advantage of open-source libraries throughout the ML pipeline
(e.g., Pandas, Numpy, Scikit-Learn), including feature selection and modeling algorithms. Given the need to identify the opti-

mal drivers for the key MWS components, we begin by removing collinearity among the potential feature inputs. We use the
Python Collinearity package (v0.6.1) to streamline the process with a VIF of 10 as recommended in the literature (Menard
2002; Chatterjee & Simonoff 2013), Equation (1). We use RFE within the Scikit-Learn package (v1.0.2) to identify the optimal

features for each MWS component (Pedregosa et al. 2011). The Scikit-Learn RFE algorithm applies an exhaustive grid search
to assign feature importance weights and recursively prunes the number of features via five-fold cross-validation. Preliminary
model development investigated the use of PCA for dimensionality reduction but model preference was for interpretable fea-

tures compared to components, favoring RFE.
The research and development process indicated that a multimodel approach, through the use of submodules for the mod-

eling of each key MWS component, best replicates the interactions and feedbacks present in a complex MWS and we explore

MLP and XGBoost algorithms. The MLP algorithm demonstrates functionality in handling large datasets, quickly converging
to a solution, and successful application for water resources modeling activities (Kouziokas et al. 2018; Raj & David 2020; Xu
et al. 2020). For each MWS component, MLP development uses mean squared error as the loss function, Adam optimizer
(1e-4), batch size of 100, 2,000 epochs, and a standardized architecture consisting of 6 hidden layers with the following

number of nodes: 128, 128, 64, 64, 32, and 16, respectively. Algorithm training uses 17 years of daily data spanning from
2000 to 2020, omitting the three testing years described in Section 3.4. The MLP algorithm uses a random selection of
75% of the training data for training and performs cross-validation on the remaining 25% of training data to determine

model performance.
The XGBoost algorithm optimizes the use of computational hardware and supports the training of large models (Chen &

Guestrin 2016), demonstrating high performance in many water resource applications (Xenochristou & Kapelan 2020; Wu
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et al. 2022; Yusri et al. 2022). Hyperparameter optimization is critical for tree-based algorithms, as hyperparameters cannot

be estimated from data inputs and influence the performance and speed of prediction (Putatunda & Rama 2018; Probst et al.
2019). We use the Scikit-Learn GridSearchCV package to perform an exhaustive grid search across hyperparameter combi-
nations to identify the optimal set for each submodule: objective: [reg:squarederror], learning rate: [0.01–1.0 by 0.05], max tree

depth: [3–15, by 5], subsample: [0.6–0.9, by 0.1], column sample by tree: [0.6–0.9, by 0.1], lambda: [0.0–3.0, 0.1], alpha: [0.0–3.0,
0.5], minimum child weight: [2–10, by 1], and the number of estimators: [200–20,000, by 500]. T. Chen & Guestrin (2016)
provides a comprehensive description of all hyperparameters. XGBoost model training uses the same 17 years of training
data as the MLP model and undergoes three-fold cross-validation.

Iterative development is an essential step for optimizing ML-WSM performance. The initial MLP and XGBoost models
used the features identified by the RFE but model performance was less than satisfactory. Feature selection is known to
improve model performance (Cai et al. 2018) and using the RFE features as a benchmark, we iteratively add and remove fea-

tures to reflect system connectivity. While diverting from the RFE-identified features could introduce collinearity into the
model, we found that adding features that enhanced the conceptual understanding of water system components improved
model performance. For example, the RFE algorithm identified the Deer Creek request�1 and Mountain Dell Reservoir�1

as the features for modeling Deer Creek request but the predictions did not capture the timing or magnitude of the requests.
We iteratively examined several feature sets to reflect the physical influences on Deer Creek requests, with the optimal fea-
tures for Deer Creek requests, and other MWS components, in Table 1. Integrating features related to the physical influences

on Deer Creek requests improved the prediction performance, displayed by a reduction in RMSE from 8:4� 104m3 to
2:5� 104m3. Comparing the final XGBoost and MLP models, the XGBoost models demonstrated greater model perform-
ance, exemplified by a reduction in RMSE from 2:5� 104m3 to 1:4� 104m3 for the Deer Creek requests model. Figure 4
illustrates the performance differences between the first and final MLP models and the final MLP and XGBoost models of

Deer Creek water requests.
A comprehensive evaluation of each model completes the development of each component model. For two of the models,

we discovered physically impossible prediction values. Predictions of groundwater withdrawal exceeded the maximum allow-

able rate (11� 104m3/day) and predictions of Deer Creek requests were below 7.3 m3/s, which is the minimum combined
flow rate for the Salt Lake Aqueduct, Provo Reservoir Canal, and Jordan Aqueduct (Figure 3). To address the physically
impossible values, we constrained the model predictions to the above values if the predictions were above (groundwater with-

drawal) or below (Deer Creek requests).

Table 1 | The iterative ML-WSM development process identified the following features for use in modeling the SLCDPU water system

Features Little Dell Reservoir Mountain Dell Reservoir Groundwater withdrawal Deer Creek requests

Day

Month X

Population

Deer Creek Request�1** X

Groundwater Withdrawal�1*** X X

Little Dell Reservoir�1*** X X

Mountain Dell Reservoir�1*** X X X X

Total Municipal Demands** X X

Total Surface Supply* X

City Creek* X

Dell Creek* X X X

Lambs Creek* X

Big Cottonwood Creek* X

Little Cottonwood Creek*

We considered all features in the features column for each MWS submodel. Superscript –1 indicates observations or predictions from previous timesteps.

*Cubic meters per second (CMS), **Cubic meters per day, ***Percentage of full capacity (%).
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The final phase in model development is connecting each submodule, necessary for running time series simulations with
the ML-WSM. Modeling predicts one time step at a time and by including system components from the previous time step
(�1), the predictions of the previous time step influence the predictions for the following time step (e.g., the prediction of

Little Dell Reservoir for July 1 forms an input for the prediction of Deer Creek requests for July 2).
All model development activities took place on a 6-core personal computer. The XGBoost models took ∼5.5 h per com-

ponent while the MLP models converged in less than 10 min. The long training time for the XGBoost models is due to
the comprehensive list of hyperparameters input into the GridSearchCV function. While using GPUs and/or

high-performance computers will support faster model development, a personal computer benchmarks the development
time for many users. The development times above do not include the time required to process the data into a model training
ready format and the duration will depend on the number of training observations. Model development time will likely

increase with increases in the data size.

3.4. Evaluation scenarios

Model evaluation design should align with the overall modeling goals identified in the conceptualization process. Aligning
with the goals of the SLCDPU, we examine the ML-WSM performance to three different snowpack-driven scenarios

Figure 4 | The recursive feature engineering (RFE) features in the multilayered perceptron (MLP) model (MLP Iteration 1) miss the timing of
and peak Deer Creek imported water use (a) and exhibits a strong underprediction bias (b). The MLP final model incorporates additional
features to reflect system connectivity and significantly improves model performance (a and b). The final XGBoost model captures the
observed peaks in Deer Creek imported water use (c) with increased accuracy compared to the final MLP model (d).
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describing the climate variability of the region and use the SLC-WSM simulations as the observed. Using the Alta Guard

MesoWest weather station located at the headwaters of Little Cottonwood Creek, we identify the most recent dry (2015,
680 cm), average (2017, 1,270 cm), and wet (2008, 1,660 cm) conditions to define the simulations (NOAA 2021). A Log-Pear-
son Type III analysis of the long-term (i.e., 1945–present) snowfall record indicates the dry year and wet year having a 150-

year and 15-year return interval, respectively (Bobee 1975). The three water years determine the respective streamflow for
supply and influence on per-capita water use. The 85%/15% training–testing split (17 years for training, 3 years for testing)
fits within the recommended testing partitioning of 10–30% (Dao et al. 2020; Pham et al. 2020). Other system factors such as
conservation, policy, and initial reservoir levels remain constant between all simulations to establish a baseline relative to the

climate anomaly. We begin the ML-WSM and SLC-WSM simulations with the same status of each component on March 31
to initiate a model run, with the first day of prediction on April 1.

The SLC-WSM and ML-WSM operate at a daily time step and require the downscaling of monthly demand to a daily res-

olution. We use cubic spline interpolation to iteratively reduce the residual difference between the monthly per-capita
demand and the monthly interpolated daily values (Supplementary Material, Figure S1). While the downscaling algorithm
does not capture spikes in daily use (e.g., unexpected pipe breaks), seasonal assessments emphasize the long-term MWS per-

formance compared to unexpected short-term events (Goharian et al. 2017; Goharian & Burian 2018).
The evaluation procedure includes the methods defining the vulnerability calculations for each MWS component. We use

Equation (8) to calculate reservoir, total groundwater withdrawal, and imported water Deer Creek request SPI (Xt) as a func-

tion of each respective component (Zt) at time t according to the component thresholds (Table 2). We derive the daily values
from SLC-WSM simulations of the observed water demand, supply, and systems operations from 2000–2020 (omitting testing
scenarios) to determine the thresholds for groundwater withdrawal and imported water requests. We use the dead pool level
of 15% of capacity to form the vulnerability threshold for the Little Dell Reservoir. While the dead pool for Mountain Dell

occurs at 25% capacity, reservoir rules adjust outflow rates to prevent a dead pool scenario, even during extreme supply-lim-
ited conditions. Given the reservoir operations, we set the unsatisfactory conditions threshold to be 45% of full capacity to
allow for a greater degree of Mountain Dell Reservoir vulnerability between scenarios and models, emphasizing the differ-

ences related to the timing of snowmelt and late-season drawdown. Equation 13 determines vulnerability as a function of
severity and exposure. Goharian et al. (2017) analyzed the relative importance of the contributing factors based on judgment,
stakeholder surveys, management, and sensitivity analysis to determine that equal weighting was appropriate. We run the

Jenks classification algorithm on the historical simulations to identify the natural breaks and categorize the levels as Low,
Medium, and High. Supplementary Material, Tables S3 and S4 display the categorical ranges of vulnerability and peak
severity.

4. RESULTS/DISCUSSION

Using dry, average, and wet climate scenarios, we assess the performance of the ML-WSM on the April–October daily pre-
dictions of reservoir levels, groundwater withdrawal, and imported water requests. We investigate the capabilities of the ML-
WSM by calculating the predictive performance, comparing the produced measures of vulnerability, and critically evaluating
the April to October predictions of each climate scenario. We conclude with a discussion of the observed benefits and limit-

ations taken from the application of the ML-WSM to the SLCDPU water system, and overall ML, for the planning and
management of water resources.

4.1. Performance of the ML-WSM

The ML-WSM accurately predicts the seasonal dynamics of each component well in all climate scenarios and we observe the
greatest prediction skill during average and dry conditions, a scenario where supply limitations can occur and require atten-
tive management. Table 3 displays the performance metrics for all climate scenarios and we include an in-depth evaluation

for the dry climate scenario (Figure 5) to illustrate the predictive capacity of the ML-WSM.

Table 2 | Unsatisfactory condition thresholds of the SLCDPU water system components

Deer Creek requests Groundwater Little Dell reservoir Mountain Dell reservoir

Threshold .Historical daily mean .Historical daily mean ,15% ,45% capacity
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4.1.1. Dry hydroclimate

The ML-WSM accurately predicts the seasonal time series of each MWS component during dry climate conditions. For the
Dell reservoir system, the predictions mirror the observed from the rise in storage from spring snowmelt to peak reservoir

level (i.e., ∼75% Mountain Dell and ∼35% Little Dell of full capacity) as well as the drawdown timing and rate, resulting
in a low RMSE, a high KGE, and a small positive PBias that indicates a slight underprediction in reservoir level (Table 3).
Figure 5 illustrates the Mountain Dell Reservoir predictions surpassing the 45% of capacity threshold within 2 days of the

observed and Little Dell Reservoir predictions nearing dead pool about a month early. While earlier predictions of a dead
pool could be a critical error, the observed is only 5% higher and would likely support similar management actions.

The groundwater withdrawal and imported Deer Creek water requests predictions demonstrate system connectivity that

resembles the observed difference in timing (i.e., early and late seasons), the magnitude of withdrawal/request, and the dur-
ation of use compared to the historical mean (Figure 5). The RMSE, KGE, and PBias metrics illustrate the high model
performance. The model captures the increased early-season groundwater withdrawal rates driven by low surface water

supplies and near-critical reservoir levels. Nearing the end of the season, the ML-WSM captures the groundwater withdrawal
response to below-average reservoir levels, high demand, and increased rates of Deer Creek requests with the appropriate
increase in daily withdrawal. Evaluating Deer Creek water requests, the model predicts the correct timing, rapidly increasing
rate of request, bimodal seasonal request peaks, and peak magnitude. The accurate predictions result in the reliability, vulner-

ability, and peak severity mirroring the observed.

4.2. Vulnerability assessment

We determine the error of the ML-WSM vulnerability assessment for each climate scenario to complete model evaluation.

The simulations of historical MWS interactions and feedbacks from the SLC-WSM, coupled with unsatisfactory/satisfactory
thresholds defining the status of each MWS component, support the categorization of vulnerability and peak severity with the
Jenks natural breaks algorithm. We compare the classification of the system vulnerabilities suggested by the ML-WSM to

those provided by the SLC-WSM (Table 4).
The ML-WSM demonstrates high skill in estimating the reliability, vulnerability, and peak severity of all MWS components

for all climate scenarios. The reliability estimates for the Dell reservoir system exhibit the greatest difference from the
observed with an underprediction of 0.09 during wet (Mountain Dell, 0.85 vs. 0.94) and dry (Little Dell, 0.78 vs. 0.88) con-

ditions. For Mountain Dell, the response is because the modeled drawdown rate surpassed the critical threshold
approximately 2 weeks before the simulation from the SLC-WSM (Supplementary Material, Figure S4). The ML-WSM cor-
rectly estimates the vulnerability classification in ten out of twelve scenarios/components. The misclassifications align with

the dry scenario and groundwater withdrawal (i.e., high predicted vs. medium observed) and during the wet scenario for Deer
Creek requests (i.e., medium predicted vs. low observed). While the ML-WSM does misclassify groundwater withdrawal
during the dry scenario, the natural break between Medium and High from the Jenks algorithm (i.e., 0.53) splits the difference

Table 3 | The ML-WSM exhibits high performance across all metrics during average and dry climate conditions but demonstrates limitations
during wet climate conditions for imported water requests

Component Climate conditions RMSE KGE PBias

Mountain Dell Reservoir level Dry 3.25* 0.88 2.06
Average 2.57* 0.91 �1.15
Wet 6.59* 0.82 8.18

Little Dell Reservoir level Dry 2.10* 0.97 2.85
Average 1.95* 0.98 �0.32
Wet 3.86* 0.82 4.47

Groundwater withdrawal Dry 0.88** 0.89 �2.08
Average 1.12** 0.91 �2.93
Wet 1.09** 0.94 1.6

Deer Creek request Dry 2.19** 0.91 3.45
Average 2.14** 0.89 �3.03
Wet 1.78** �0.33 87.16

*Units in % of full reservoir level, **Units in �104 m3
.
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between the actual (i.e., 0.51) and predicted (i.e., 0.55) values. The peak severity of each component predicted by the ML-
WSM matches the observed for each climate scenario. While the model correctly classifies the peak severity of each com-
ponent, peak severity values exhibit the greatest deviations from the observed compared to other metrics.

Figure 5 | The ML-WSM produces accurate MWS component predictions and vulnerability estimates during dry climate conditions,
emphasized by the minimal prediction bias in the prediction vs. observed plots. The model captures the snowmelt-storage increase in the
Dell reservoir system, increased initial groundwater withdrawal, and bimodal seasonal imported Deer Creek water requests, demonstrating
the system response to reduced surface water supply and low reservoir levels.
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The vulnerability and peak severity values and classifications highlight the information differences between each metric.
For example, the supply and demand factors influencing the MWS during the dry climate conditions lead to a Deer Creek
water request pattern similar to historical conditions but at a greater magnitude. While there is a greater overall quantity

of water requested at the seasonal scale (High vulnerability), the conditions result in a Medium level of peak severity because
there are no large differences between the modeled and the historical mean (i.e., unsatisfactory/satisfactory threshold).
During the average climate conditions, the increased municipal water demand and seasonal supply limitations drive the
Deer Creek requests to a peak in July compared to the historical mean peak in mid-August. While the spike in July imported

water use leads to a High level of peak severity, the model estimates vulnerability to be medium because the seasonal request
volume is minimally greater than the historically observed. We find peak severity communicates the most extreme state of the
system while vulnerability refers to the average state of the system for the season, with the differences in information exem-

plifying the benefits of a multi-metric assessment to inform MWS planning and guidance activities.

4.3. Data-driven water system planning and management

Applying the ML-WSM to the SLCDPU water system demonstrates the benefits of incorporating ML methods into the plan-

ning and management tool kit. The ML model delivers minimal prediction error and captures the overall MWS dynamics and
relationships without the need for an extensive system understanding or high parameterization. While we train the ML-WSM
on the data from the SLC-WSM simulations, the model demonstrates the skill to model reservoir operations, imported water

requests, and groundwater withdrawal as a function of their physical operations, limitations, and system connectivity. We
foresee no significant deviations in model performance compared to a systems model for real-world application and view
the use of physical observations as an opportunity to compare the performance between the ML-WSM and systems

models. Although not a direct measure of prediction accuracy, the ML-WSM predicts 60� faster than the systems model
(2 s vs. 120 s, respectively), allowing for more rapid simulations and investigations of MWS response. With respect to
model development, algorithm training requires minimal developer input compared to systems models and collectively
has 36 parameters (e.g., nine hyperparameters per MWS component model) compared to the 4,300 parameters in the

SLC-WSM. Even though the XGBoost training took approximately 5.5 h/MWS component, model training can occur outside
of business hours or in the background while the developer addresses other tasks. In comparison, the systems model required
constant attention and iteration by the developers over many years.

The demonstration of system connectivity, high prediction performance, and open-source nature support the ML-WSM as a
tool to advance water system management. Future research applications using a probability of inputs (e.g., stochastic model-
ing) or developing the ML-WSM with probabilistic algorithms (e.g., Gaussian Process Regression) could provide a probable

Table 4 | The high prediction accuracy of the ML-WSM produced reliability, vulnerability, and peak severity estimates with minimal differ-
ences from the observed (in parenthesis) for each MWS component, resulting in the correct classification of 10 out of 12
vulnerability classes and all peak severity classes

Metric Climate scenario (snowpack) Mountain Dell Little Dell Groundwater withdrawal Deer Creek request

Reliability Dry 0.39 (0.41) 0.79 (0.88) 0.58 (0.55) 0.47 (0.43)
Average 0.91 (0.90) 1.0 (1.0) 0.47 (0.55) 0.75 (0.76)
Wet 0.85 (0.94) 1.0 (1.0) 0.64 (0.66) 0.99 (1.0)

Vulnerability Dry 0.79 (0.78) 0.48 (0.49) 0.55 (0.51) 0.50 (0.45)
Average 0.57 (0.62) 0.50 (0.50) 0.55 (0.53) 0.47 (0.39)
Wet 0.67 (0.54) 0.50 (0.50) 0.48 (0.46) 0.13 (0.02)

Peak severity Dry 1.0 (0.91) 0.31 (0.23) 0.57 (0.60) 0.60 (0.52)
Average 0.19 (0.32) 0.0 (0.0) 0.30 (0.27) 0.73 (0.65)
Wet 0.43 (0.11) 0.0 (0.0) 0.20 (0.18) 0.01 (0.0)

Vulnerability level Dry M (M) L (L) H (M) H (H)
Average M (M) L (L) H (H) H (H)
Wet M (M) L (L) M (M) M (L)

Peak severity level Dry H (H) M (M) M (M) M (M)
Average M (M) L (L) L (L) H (H)
Wet M (M) L (L) L (L) L (L)

Journal of Hydroinformatics Vol 25 No 5, 1602

Downloaded from http://iwaponline.com/jh/article-pdf/25/5/1584/1302893/jh0251584.pdf
by guest
on 11 January 2024



range of predictions (Dhara et al. 2018; Castellani et al. 2021; Fang et al. 2022) that reflect intrasystem variability and support

risk-tolerance-based decision-making (Towler et al. 2013). While not modeling the components of an MWS, Sun et al. (2014)
and Bonakdari et al. (2019) probabilistic algorithms successfully forecast streamflow and lake water levels, respectively.

The open-source concept of the ML-WSM leverages and contributes to advancements throughout the community modeling

enterprise. The open-source Scikit-Learn package supports data processing, train/test partitioning, variable selection, model
algorithms, and evaluation tools at no charge to the developer. Community modeling supports the latest advances in ML,
where platforms like GitHub provide a virtual arena to share tools, discuss problems, and create solutions that support
the transition of research to operations as other tools now support hydrological hazard awareness (Khattar et al. 2021),
such as forecast-informed reservoir operations (Delaney et al. 2020) or the Next-Generation water resources framework of
the National Water Model (Bartel et al. 2021). Open-source software not only supports end-users and stakeholders but
can have broad-reaching impacts related to user engagement and learning opportunities. Researchers can adapt the ML-

WSM for their systems modeling objective, use it as an educational tool, and/or contribute and enhance model functionality.
Compared to a licensed software platform, the limitations surrounding the quantity and quality of available external resources
can create roadblocks that hinder development and often only provide access to a few select individuals.

4.4. Opportunities to advance the ML-WSM

Applying the ML-WSM to the SLCDPU system highlighted opportunities to advance the modeling framework ranging from
general ML challenges to enhancing transferability among systems. A needed advancement is methods implementing phys-
ical constraints on MWS components to prevent impossible results, a known limitation of data-driven models (Qian et al.
2020). We encountered the prediction of impossible results during the preliminary phases of development with negative esti-
mates of groundwater withdrawal and Deer Creek imported water requests less than the minimum flow rate. While we
implemented model constraints, it implies that physically impossible errors can occur, such as reservoir levels exceeding

100%, below the dead pool, or even negative values. Future applications of the ML-WSM could explore physics-informed
ML models which can address the physical limitations of the system, allowing network architectures to automatically satisfy
some of the physical sets of assumptions before performing any computation (Qian et al. 2020). Physics-informed ML could

account for the mass balance of reservoir level change, groundwater withdrawal, and imported water use from municipal
water demand to ensure no net gain or loss of water at each time step of a simulation. Integrating methods to physically con-
strain model predictions can aid in model interpretability, addressing the black box and explaining the conceptual path to

prediction (Molnar et al. 2020).
Another opportunity to advance ML models is to develop frameworks to improve the reliability of dynamical system pre-

dictions outside of the training bounds. Alterations of the statistical behavior between feature-target responses, such as from a
changing climate or a change in service area composition, can challenge ML model prediction skill (Feudel et al. 2018;
Kaszás et al. 2019). The parameterization and physical connections within a systems modeling framework can model inter-
actions entering a state of non-stationarity, addressing a limitation of data-driven methods (Chantry et al. 2021; Shi et al.
2021). Evolving ML methods utilizing reservoir computing RNN models show promise in the prediction of long-term dyna-

mical systems behavior influenced by non-stationarity, including sudden changes due to regime transitions (Patel et al. 2021;
Patel & Ott 2023). While the use of the extreme wet and extreme dry testing scenarios exhibit conditions outside of the
bounds of model training and the ML-WSM demonstrated high prediction skill, the high performance may be attributed

to the selected forecasting horizon. To assess the long-term impacts of non-stationarity on MWS performance with ML,
we recommend exploring reservoir computing RNN and/or physics-informed ML methods.

4.5. Model synergy

We see a synergistic approach for the integration of ML into MWS management and decision-making, as the results indicate

that the ML-WSM does not need to replace the systems model to be beneficial. The systems modeling methods will likely
provide the most physically representative estimates of MWS performance but the fast and accurate representation of the
MWS from the ML-WSM can function as a first approximation. Fast simulation speeds can complement a systems model

analysis by quickly evaluating many system scenarios, assessing the respective responses of each key MWS component,
and developing preliminary scenario-driven system management actions in a short period of time. For example, the process
could quickly inform system management on the level of conservation needed to maintain a specific reliability threshold
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during supply-limited conditions. For MWS without an existing model but with ample data, the ML-WSM can reduce the

barriers to modeling the water system.
The ML-WSM framework demonstrates the potential to benefit MWS planning and management by establishing a pillar of

increasing engagement throughout the community. The concept builds on the open-source nature of the ML community to

interact with a larger audience than systems models. Open-source products like Tethys provide a platform to increase com-
munity awareness concerning system response to externalities (Swain et al. 2016). Maturing the ML-WSM into a web
application targeting public water use awareness could engage a broad audience, as an interactive environment using a
trained ML-WSM and multiple scenarios could present information within a game-like setting that encourages experimen-

tation and serves as an education tool (Savic et al. 2016; Laucelli et al. 2019). A synergistic approach to water system
modeling (ML and systems models) brings the benefits of physical and data-driven models to inform decision-making and
address high-impact real-world water management challenges.

5. CONCLUSION

We apply the ML-WSM to the SLCDPU water system to identify the strengths and limitations of ML in modeling water
system interactions between key MWS components that are critical to decision-making. Using the existing systems model

as the observed baseline and three different climate scenarios affecting supply and demand, the ML-WSM demonstrates
high prediction skill. Using the Xtreme Gradient Boosted (XGBoost) algorithm, the ML-WSM captures the defined feedbacks
and interactions of seasonal reservoir level dynamics, groundwater withdrawal, and imported water requests with minimal

error and without the high parameterization, high computational requirements, or the long development period of systems
models. We couple the predictions to a vulnerability assessment that categorizes peak severity and vulnerability for each
key component to improve the interpretability of the results, aiding in decision-making by providing a platform to compare

simulations with the historically observed values. While a different measure of performance, the ML-WSM consistently pre-
dicted 60� faster than the systems model (2 s vs. 120 s, respectively) and model development took days compared to years,
owing to minimal developer input compared to systems models. The novel application of ML for modeling MWS components

demonstrates a key contribution to the water resources community by prototyping a complete data-driven MWS model that
reduces the development barriers to entry, systematically bypassing the extensive parameterization of a systems model.

Even with the successful implementation of the ML-WSM on the SLCDPU water system, there is potential for improve-
ment. The model evaluation identified impossible values that required physical model constraints to reflect system

limitations. We recommend future work exploring physics-informed ML to address the identified limitations and reservoir
pool algorithms to examine the feasibility of ML for modeling non-stationarity in water systems. Given the identified limit-
ations, we foresee the ML-WSM to have broad-reaching impacts such as supporting interactive open-source tools,

strengthening the understanding of the MWS for utilities without an existing systems model, and establishing a synergistic
approach combining ML with physically based modeling systems to engage the greater community and contribute to a
wide range of high-impact real-world water management challenges.

OPEN RESEARCH

All Python v3.10.1-based models are available on Github: https://github.com/whitelightning450/Machine-Learning-Water-
Systems-Model. The repository contains all data to train and run the ML-WSM, providing a framework guiding the adaptation

of the code to another system of interest. The SLC-WSM is not provided for review due to security reasons specified by the
SLCDPU. Permission for this model requires direct consent from the SLCDPU.
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